应用统计系

副教授

王家赠


北京工商大学,副教授

通讯地址:北京工商大学77779193永利(中国)有限公司,邮编: 100048

电子信箱:wangjiazeng@th.btbu.edu.cn

个人简历

77779193永利(中国)有限公司背景

  • 19758月出生于浙江省诸暨市;

  • 19967月毕业于南京大学数学系概率统计专业,获学士学位;

  • 20037月毕业于南京大学商学院数量经济专业,获硕士学位;

  • 200811月毕业于上海大学理学院数学系,获博士学位;

  • 200901月至20112月,北京大学数学科学学院 博士后;

工作经历

  • 19968月至20008月;20038月至20063月,绍兴文理学院讲师。

  • 200901月至20112月,北京大学数学科学学院 博士后;

  • 2011.02-----至今 北京工商大学理学院数学系 副教授


目前主要研究领域:

离子通道,主要是钾、钠、和乙酰胆碱受体通道,的随机动力学结构。在此基础上,研究神经元细胞膜的膜电压涨落的特性。在平稳条件下,研究膜电压的分布、矩、谱域上的性质、以及能量耗散等。在外界脉冲驱动或者周期驱动条件下,离子通道以及膜电压的反应特征。在分子层面以及亚细胞层面的降噪结构。


主讲课程:

数学分析、研究生应用随机分析、概率论与数理统计


主持科研项目

  • “复杂网络中的动态过程:从微观机制到宏观动力学” 国家自然科学基金青年项目,批准号:110010042010.1-2012.12.

  • “复杂网络上的随机过程”(20090450243 博士后科研基金

  • “第三批博士后特别资助”(编号:201003021)。

近年发表的主要论文:

离子通道和膜电压涨落领域[1–7]

[1]   WANG J Z, WANG R Z. Analytical solution of the steady membrane voltage fluctuation caused by a single ion channel[J/OL]. Physical Review E, 2017, 95(5): 052409. https://doi.org/10.1103/PhysRevE.95.052409.

[2]   WANG J Z, WANG R Z. Free energy dissipation of the spontaneous gating of a single voltage-gated potassium channel[J/OL]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2018, 28(2): 023103. https://doi.org/10.1063/1.5022980.

[3]   FAN Y H, WANG J Z. Non-adiabatic membrane voltage fluctuations driven by two ligand-gated ion channels[J/OL]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2019, 29(7): 073108. https://doi.org/10.1063/1.5096303.

[4]   WANG J Z, FAN Y H. Characterizing the voltage fluctuations driven by a cluster of ligand-gated channels[J/OL]. Physical Review E, 2021, 103(5): 052401. https://doi.org/10.1103/PhysRevE.103.052401.

[5]   WANG J Z, MENG Y T. The voltage-depolarization performance vs the free energy cost of a single nACh receptor[J/OL]. Journal of Theoretical Biology, 2021, 531: 110904. https://doi.org/10.1016/j.jtbi.2021.110904.

[6]   WANG J Z, MENG Y T. The power spectrum of the membrane voltage driven by a single nACh receptor[J/OL]. Journal of Theoretical Biology, 2021, 509: 110528. https://doi.org/10.1016/j.jtbi.2020.110528.

[7]   WANG J Z, SHEN Z J. Mechanisms of the end-plate potential noise and its implication for the neuromuscular junction anatomy[J/OL]. Journal of Theoretical Biology, 2022, 540: 111089. https://doi.org/10.1016/j.jtbi.2022.111089.

复杂网络传播动力学[8–17]

[8]   WANG J, LIU Z. Mean-field level analysis of epidemics in directed networks[J/OL]. Journal of Physics A: Mathematical and Theoretical, 2009, 42(35): 355001. https://doi.org/10.1088/1751-8113/42/35/355001.

[9]   WANG J Z, FAN Y H. Laws of epidemic dynamics in complex networks[J/OL]. Physica A: Statistical Mechanics and its Applications, 2019, 524: 30-35. https://doi.org/10.1016/j.physa.2019.03.019.

[10] WANG J Z, MO L P, LIANG D F, . Intrinsic circular motions in stochastic pairwise epidemic models[J/OL]. Physica A: Statistical Mechanics and its Applications, 2014, 395: 209-217. https://doi.org/10.1016/j.physa.2013.10.010.

[11]  WANG J Z, PENG W H. Fluctuations for the outbreak prevalence of the SIR epidemics in complex networks[J/OL]. Physica A: Statistical Mechanics and its Applications, 2020, 548: 123848. https://doi.org/10.1016/j.physa.2019.123848.

[12] WANG J zeng, LIU Z rong, XU J. Epidemic spreading on uncorrelated heterogenous networks with non-uniform transmission[J/OL]. Physica A: Statistical Mechanics and its Applications, 2007, 382(2): 715-721. https://doi.org/10.1016/j.physa.2007.04.034.

[13] JIAZENG W. Dual Effects of Heterogeneous Infrastructure on SIR Epidemics: Threshold and Outbreak Size[J]. 20.

[14] WANG J Z, QIAN M. Discrete Stochastic Modeling for Epidemics in Networks[J/OL]. Journal of Statistical Physics, 2010, 140(6): 1157-1166. https://doi.org/10.1007/s10955-010-0034-5.

[15] WU B, MAO S, WANG J, . Control of epidemics via social partnership adjustment[J/OL]. Physical Review E, 2016, 94(6): 062314. https://doi.org/10.1103/PhysRevE.94.062314.

[16] WANG J Z, QIAN M, QIAN H. Circular stochastic fluctuations in SIS epidemics with heterogeneous contacts among sub-populations[J/OL]. Theoretical Population Biology, 2012, 81(3): 223-231. https://doi.org/10.1016/j.tpb.2012.01.002.

[17]王家赠, 薛晓峰, 网络上SIR型传播的随机建模与极限定理, 应用数学学报, Vol. 35 No. 4, 663-676. July, 2012

Josephson结非线性动力学领域[18–20]

[18] QIAN M, WANG J Z. Transitions in two sinusoidally coupled Josephson junction rotators[J/OL]. Annals of Physics, 2008, 323(8): 1956-1962. https://doi.org/10.1016/j.aop.2008.04.002.

[19] WANG J, ZHANG X, YOU G, . Transition behaviours in two coupled Josephson junction equations[J/OL]. Journal of Physics A: Mathematical and Theoretical, 2007, 40(14): 3775-3784. https://doi.org/10.1088/1751-8113/40/14/003.

[20] QIAN M, WANG J Z, ZHANG X J. Resonant regions of Josephson junction equation in case of large damping[J/OL]. Physics Letters A, 2008, 372(20): 3640-3644. https://doi.org/10.1016/j.physleta.2008.02.029. 

Baidu
sogou